CoAP Tutorial for Raspberry Pi

For Python users, both the CoAPthon (https://github.com/Tanganelli/CoAPthon) and txThings
(https://github.com/mwasilak/txThings) are usable Python implementations of CoAP. CoAPthon

has better documentation and is easy to follow.

The following tutorial is for Java users. It shows how to run a CoAP server on Raspberry Pi, and
view the CoAP resources through Copper, the CoAP user-agent.

1. Install Maven

Maven is used to manage the dependencies of complex projects, such as the CoAP
implementation. Install Maven so that you don’t need to manually deal with the dependencies
of the library.

$ sudo apt—-get install maven

After the installation, you may have two versions of java on your Raspberry Pi. Run the following
command to set both the java JDK and java JRE to the same version:

$ update-java-alternatives -1
[jdk name 1 (openjdk-6)] ## [path]
[jdk name 2(java-jdk-8)] ## [path]
This command list all java JDKs installed on the Raspberry Pi.
$ update-java-alternatives -s [Jjdk name 2 (java-jdk-8)]

This command set the jdk to java version 1.8, the same as the default java JRE version on
Raspberry Pi.

2. Download CoAP library
There are two ways to download CoAP core from github:
a) On windows, download the .zip file directly from the github page:

https://github.com/eclipse/californium

Then unzip it, use FileZilla or similar ssh file management software to transfer the library to
your Raspberry Pi.

b) Or you can download it directly from the Raspberry Pi. From the terminal, run the
following command to get a copy of the files (a clone of the repository):

https://github.com/Tanganelli/CoAPthon
https://github.com/mwasilak/txThings
https://github.com/eclipse/californium

$ cd [your destination folder]

$ git clone https://github.com/eclipse/californium.git myCoAP

3. Compile the CoAP library and examples:

This is the basic way of how you compile your CoAP projects. Enter the root of CoAP library:
$ cd myCoAP/demo-apps/cf-helloworld-server
$ sudo mvn clean install

All the CoAP projects will be compiled as .JAR file and locate in myCoAP/demo-apps/run/.

4. Run “Hello World” server application
Run the following command to start a CoAP server:

$ cd myCoAP/demo-apps/run

$ java —-jar cf-helloworld-server-1.0.0-SNAPSHOT. jar

The source code of the “Hello World” is located at myCoAP/demo-apps/cf-helloworld-

Server.

Basically, you will modify this example for your Project 2. Add sensor readings as “resources” in
the server. Refer to class “HelloWorldResource” inthe helloword-server example.

class HelloWorldResource extends CoapResource {
public HelloWorldResource() {

// set resource iCE”hi;ier
super("hellolWorld");

/ set display name
getAttributes().setTitle("Hello-World Resource");
¥
@override

public weid handleGFT({CoapExchange exchange) {

// respond to the request
exchange.respond("Hello World!");

https://github.com/eclipse/californium.git

You can also check the examples from the following Github repository:

https://github.com/jvermillard/hands-on-coap

5. Install Copper user-agent add-ons on Firefox.
Open your Firefox browser, and load the following link from Firefox:

https://addons.mozilla.org/en-US/firefox/addon/copper-270430/

Copper (Cu)
by Matthias Kovatsch

The Copper (Cu) CoAP user-agent for Firefox installs a handler for the 'coap’
URI scheme and allows users to browse and interact with Internet of Things
devices.

4+ Add to Firefox

This add-on has been preliminarily reviewed by Mozilla. Learn more

Then simply click the “Add to Firefox” button to install Copper.

6. Access the “HelloWorld” server through Copper

Type the following CoAP address to access the “HelloWorld” server. Suppose the ip address of
your Raspberry Piis 192.168.1.17:

coap://192.168.1.17:5683/

https://github.com/jvermillard/hands-on-coap
https://addons.mozilla.org/en-US/firefox/addon/copper-270430/

& 152.168.1.17/weltknown/core

@& | @ coap://192.168.1.17:5683/.well-known/core

S Most Visited v+ {7} Getting Started §| Neoben's Blog: TinyO... <3 WIN7 FVirtualboxEg...

CVpiscover @vring GceEr kdrost Edpur EJpELETE Y observe Payload |Text 2| Beh
bl | = | [|

192.168.1.17:5683
¥4 192.168.1.17:5683 Header Value Option
!@ .well-known Type
.. core Code
Message ID
Token
Payload

& Incoming EJ Rendered | | k) Oukgoing

. . GET . .
Click “core”, then click G , you will get all the resources on the server. In this example, the
resource name is “helloworld”:

192.168.1.17:5683

2.05 Content (Blockwise) (Download finished)

V4> 192.168.1.17:5683 Header Value Option Value

*@ .well-known Type Acknowledgment Content-Format application/link:
L@ core Code 2.05 Content Block2 0 (64 B/block)
@ helloworld MessageID 646

Token empty

Payload (62)

& Incoming | EJ Rendered | | LJ Outgoing
/helloWorld

un title: Hello-world Resource

[well-known/core

Then click “helloworld” and _GGH, you will get the response which is sent back by the
“helloworld” resource, which is the string “Hello World!”:

192.168.1.17:5683

2.05 Content (Blockwise) (Download finished)

"‘__' 192.168.1.17:5683 Header Value Option

*@) well-known Type Acknowledgment Content-Format
@ core Code 2.05 Content Block2

@® helloworld Message ID 56503
Token empty

Payload (12)
&J Incoming | £ Rendered | [z Outgoing

Hello World!

7. Include Pi4J) dependency for your CoAP project using the POM.xml file

Edit the /demo-apps/cf-helloworld-server/pom.xml to include the Pi4J library.
Add the following between the <dependencies> flag. Change the version according to the
Pi4J version you use. For example, if you use “pi4j-1.1”, then change the <version>to 1.1.

<dependency>
<groupld>com.pidj</groupld>
<artifactld>pi4j-core</artifactld>
<version>1.0</version>
</dependency>

