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Abstract—In large-scale multi-hop wireless sensor networks
(WSNs) for data collection, the ability of monitoring per-packet
routing paths at the sink is essential in better understanding
network dynamics, and improving routing protocols, topology
control, energy conservation, anomaly detection, and load balance
in WSN deployments. In this study, we consider this important
problem under tremendous WSN routing dynamics, which cannot
be addressed by previous methods based on a routing tree model.
We formulate the WSN topology inference as a novel optimization
problem, and devise efficient decoding algorithms to effectively
recover WSN routing topology at the sink in real-time using
a small fixed-size path measurement attached to each packet.
Rigorous complexity analysis of the devised algorithms is given.
Performance evaluation is conducted via extensive simulations.
The results reveal that our approach significantly outperforms
other state-of-the-art methods including MNT, Pathfinder, and
CSPR. Furthermore, we validate our approach intensively with
a real-world outdoor WSN deployment running collection tree
protocol for environmental data collection.

Index Terms—Wireless sensor networks, routing dynamics,
path reconstruction, performance analysis, real-world testbed

I. INTRODUCTION

Monitoring routing dynamics in large-scale multi-hop wire-
less sensor networks (WSNs) is of paramount importance in
better understanding network behaviors under dynamic com-
munication environments, and improving routing protocols,
topology control, energy conservation, anomaly detection, and
load balance, making optimized operations and management
of WSN deployments possible (e.g.,[1, 2, 3]). Due to the
severe resource limitation (e.g., memory, bandwidth, and bat-
tery power) of unattended wireless sensor nodes deployed
in outdoor and harsh environments, typically only limited
indirect measurements can be obtained at the WSN sink(s)
for the instrumentation of WSN dynamics. However, most
studies on WSN inference have focused on link loss and
delay monitoring [4-9], where the key assumption made is
that routing topology is already known a priori. A few recent
studies on WSN routing path inference are mainly restricted
to either the static tree routing model due to its minimum
overhead [2], or some heuristic techniques [1, 10, 11]. The
routing tree model implies that an intermediate node would
use its parent node in forwarding a through-packet within
any data collection cycle, which may not be realistic due
to time-varying wireless channel dynamics in many real-
world deployments. In fact, the wireless channel quality (e.g.,
fading and interference) is highly dynamic for outdoor WSNs
deployed in harsh environments, making the routing tree based

approaches unreliable and undesirable. To this end, we ask a
fundamental question: what approaches would be desirable to
reconstruct a WSN per-packet path in dynamic routing under
drastic communication link dynamics?

To address the above challenges, we consider developing a
systematic approach. Using a general routing topology model,
we first formulate the WSN topology inference as a novel
and compressed sensing (CS) inspired optimization problem,
and then devise new efficient algorithms to effectively recover
WSN dynamic routing topology at the sink using a small
fixed-size path measurement attached to each packet. With
such tiny and fixed-size measurement information attached
to each packet, the linear combination of labels of traversed
communication links is encoded along the path, minimizing
packet overhead and saving the severe node resources. Our
approach is able to directly and accurately recover the per-
packet path and thus the routing topology dynamics of the
entire network beyond the routing tree model in near real
time. We feel that a CS inspired approach is particularly suited
for the problem of monitoring WSN routing topology because
the complexity resides at the sink side for topology recovery,
where the sink, different from the sensor nodes, is assumed
to be not resource-constrained. Furthermore, our approach is
general and systematic without imposing any constraints on
applications and/or underlying routing schemes. We devise
algorithms to reconstruct per-packet paths in both reliable and
lossy WSNs.

The major contributions of this work are as follows:

• We present a new systematic approach and algorithms
for path reconstruction in multi-hop non-synchronized
WSNs, inspired by the compressed sensing concept.

• We conduct extensive simulations to evaluate our ap-
proach versus other state-of-the-art methods including
MNT [2], Pathfinder [11], and CSPR [18]. Evaluation
results reveal that our approach significantly outperforms
MNT, Pathfinder, and CSPR.

• We validate our approach through real-world experiments
in an environmental multi-hop WSN testbed deployed in
a watershed in Western Pennsylvania.

The reminder of the paper is organized as follows. Section
2 presents related works as well as a brief highlight of the
novelty of this work. Section 3 presents our approach and
formulation. Section 4 presents our WSN topology recovery
algorithms. In Section 5, we provide our simulation evalu-



ation results and analyses. Section 6 reports our real-world
WSN testbed validation experiments which were conducted
for months with more than 200 thousands of received packets.
Finally, Section 7 gives the conclusions and outlines our future
work.

II. RELATED WORKS

The most related works for path inference in WSNs are
Multi-hop Network Tomography (MNT) [2], Passive Diagno-
sis (PAD) [1], PathZip [10], Pathfinder [11], and Compressive
Sensing based Path Reconstruction (CSPR) [18]. Following
a tree model, MNT utilizes the parent node (i.e., first-hop
receiver) information of the locally generated packets (called
as anchor packets) from an intermediate node to infer the
routing path of each forwarded packet by the node based on the
assumption that the routing path is mostly static and packet
loss rate is low. The assumptions, however, do not hold in
most real-world WSN deployments in extreme communication
environments. Thus, MNT fails when consecutive anchor
packets travel through different parent nodes due to wireless
link dynamics. The advantage of MNT is the minimum packet
overhead needed to each packet. Targeting at the application
of WSN diagnosis, PAD is a probabilistic inference approach
based on Belief network for inferring the root causes of
network abnormal phenomena. In PAD, a marking scheme is
proposed at sensor nodes for the topology reconstruction at
the sink, but each intermediate node has to maintain a cache
for its downstream source nodes, which could be adversely
large when network size increases. PathZip compresses the
path information into a 64-bit hash value carried by each
packet. Along a packet route, each forwarder computes the
new hash value using a hash function, taking the current
forwarder’s node ID and the attached hash value in the packet
as inputs. Then the sink conducts path search in an exhaustive
manner. Pathfinder only stores path difference information in
each packet. Different from MNT which uses a set of anchor
packets to infer the routing path, Pathfinder uses only one
previous packet originating from a forwarder as reference
packet to infer the routing path. Pathfinder thus can handle
with more routing dynamics for path reconstruction. However,
Pathfinder requires that every WSN node must send out local
packets with a fixed inter packet interval due to its reference
packet identification problem. According to [11], Pathfinder
achieved higher path reconstruction ratio than both MNT and
PathZip. CSPR, based on CS, represents a path as a sparse
node vector whose element corresponds to a node in the WSN.
CSPR requires to collect a certain number of packets (i.e., the
path measurements) for a particular routing path from multiple
data collection cycles before it can reconstruct the path using
the traditional CS technique. It fails to recover infrequent paths
as no sufficient number of packets could be collected even after
lot of collection cycles. Our approach does not rely on any
reference packet to infer the per-packet routing path, which is
not only more robust in lossy WSNs, but also more general in
the sense of no specific restrictions/requirements imposed on
WSN deployments and applications. In contrast to CSPR, our

approach has a fundamentally different optimization formu-
lation, achieving significantly better performance with much
less node resource than CSPR. This paper significantly extends
our previous work [21], addressing general non-synchronized
lossy WSNs with new algorithms, theoretical analyses, perfor-
mance comparisons, and real-world testbed validations.

III. OUR APPROACH

A. Routing Model

To account for WSN routing dynamics even within a
single cycle of data collection, we consider a general routing
topology model for WSN by a directed acyclic and connected
graph G = (V,E), where V is a set of n nodes (i.e., the sink s
and n−1 sensor nodes) with its cardinality |V | = n, and E is
a set of edges. A directed edge eu,v , where (u, v) ∈ V × V ,
represents the wireless communication link from node u to
node v. Let pi = {ei,r1 , er1,r2 , · · · , erj ,s} denote a routing
path originating from source sensor node i to the sink s where
r1, r2, · · · , rj are intermediate nodes for relay in the route.

In contrast, the commonly used routing tree topology model
is a directed spanning tree T = (V,E0), where the sink is the
root, and E0 is the edge set with |E0| = n − 1. Clearly,
T (T ⊆ G) is a minimum connected graph, which means that
each node has a unique path toward the sink in any given
collection cycle, whether initially sending or relaying packets.
This static routing tree model allows for a simple recovery of
the routing topology, but it is not feasible in large-scale multi-
hop WSNs where dynamic routing is inevitable during a data
collection cycle due to drastic channel dynamics.

To facilitate our study, the general routing topology model
of G is represented as a (directed) spanning tree augmented
with some additional edge(s), where these additional edge(s)
are called as ’shortcut(s)’. Hence, our general routing topology
G is referred to as a (directed) Augmented ’Tree’ (A-Tree).
Let E+ denote the set of shortcuts, then for our A-Tree
model G = (V,EA) we have EA = E0 ∪ E+, with
|EA| = |E0| + |E+| = n − 1 + |E+|. That is, an A-
Tee model allows an individual sensor node to send and
forward packets that may traverse different paths to the sink
at different time instances in a collection cycle due to the
dynamic routing under tremendous wireless channel dynamics.
An illustration of an A-Tree is given in Fig. 1. The A-Tree in
Fig. 1(a) is shown as a static tree plus a set of two shortcuts,
as illustrated in Fig. 1(b). In this example, the routing path
of node 3 was p3 = {e3,1, e1,0}, but edge e3,1 was no
longer available at the moment, due to the degradation of
the link quality, when a packet from node 4 reached node
3 and needed to be forwarded to the sink; thus edge e3,2, a
shortcut, was chosen for this packet, forming the routing path
p4 = {e4,3, e3,2, e2,0}. Similarly, when another packet from
node 5 arrived at node 3, both edges e3,1 and e3,2 became not
available; therefore, another new shortcut e3,0 was selected for
forwarding at node 3, resulting in the path for the packet as
p5 = {e5,3, e3,0}.



Fig. 1. An illustration of an A-Tree.

B. Problem Formulation

Given a WSN of size n, let yi denote a path measurement
of path pi piggy-back to a packet received at the sink.
Therefore, Y = {y1, y2, · · · , yM}T denotes a measurement
vector (M = n− 1), a complete set of M path measurements
collected from all sensor nodes of the WSN in a data collection
cycle. If each per-packet path of M paths {p1, p2, · · · , pM}
is reconstructed at the sink for each collection cycle, the
entire dynamic routing topology G(V,EA) in that cycle can
be reconstructed accordingly.

We introduce the concept of Base Topology of multi-hop
WSN upstream routing for data collection, denoted by
G∗(V,E∗) with |V | = n, defined as the superset of all
possible routing topologies of the WSN. Any link e (e ∈ E∗)
is assigned a unique label value le by a labeling function
L : E → N , where N denotes the set of positive integers.
As outgoing links from the sink are excluded for WSN data
collection, the total number of all possible directed wireless
links (considering asymmetry wireless channel property) for
G∗ should be |E∗| = n(n− 1)− (n− 1) = (n− 1)2.

With commonly used WSN routing protocols (e.g., Collec-
tion Tree Protocol [12]), good wireless links will be reused, to
improve the WSN performance. Our insight is that the number
of different wireless links actually used to form a WSN routing
topology Gi(V,E

A
i ) in any data collection cycle i would be

much fewer than the potential choices in its base topology G∗.
In other words, the dynamic routing topology Gi is sparse in
comparison with the base topology G∗, i.e., |EA

i | � |E∗|.
Hence, we formulate our approach inspired by the compressed
sensing concept [13, 14]. The standard CS framework is as
Y = ΦX , where X is an N × 1 sparse discrete signal vector,
Φ is an M × N measurement matrix and Y is an M × 1
measurement vector. The CS theory enables, under certain
conditions, the recovery of X from Y where M � N , as
long as signal X is sparse. This can be achieved by solving
the following optimization:

X̂ = argminx‖X‖p subject to Y = ΦX, (1)

where ‖X‖p (p = 0, 1) denotes lp-norm of X .
In our formulation, let N = |E∗| = (n − 1)2. Let

X ′ = {x′1, x′2, · · · , x′N}T be a binary indicator vector of N
dimension. Let X = {le1x′1, le2x′2, · · · , leNx′N}T , a link vec-
tor where lei is an assigned integer label for link ei, represent
an A-Tree and shall be sparse. Given any WSN of size n, the
sink receives a set of M different path measurements, denoted

as an M×1 vector Y = {y1, y2, · · · , yM}T where M = n−1.
The routing matrix of WSN for a given collection cycle can
be represented as Φ = {ϕi,j} (1 ≤ i ≤ M, 1 ≤ j ≤ N)
where the ith row represents the ith path while the jth column
represents the jth link, whose elements ϕi,j are defined as

ϕi,j =

{
1, the ith path traverse over the jth link;
0, otherwise.

Note that |EA| = n − 1 + |E+|, where |E+| is the number
of shortcuts in A-Tree topology G. Since X is sparse, |E+

i |
should be a relatively small number (e.g., |E+| � n) for one
collection cycle. Thus, we can formulate the dynamic routing
topology inference problem as follows. Given a measurement
vector Y at the WSN sink, recover the X and routing matrix
Φ, so that

X̂ = argmin‖X‖0 subject to Y = Φ̂X, (2)

where l0-norm ‖X‖0 is the number of nonzero elements in
the vector X , that is ‖X‖0 = |EA|.

We point out that in the traditional CS formulation [13,
14], measurement matrix Φ in (1), whether randomly or
deterministically generated, is known a priori. In contrast, the
routing matrix Φ in our problem formulation of (2) above is
completely unknown and determined by the underlying routing
scheme operated in an undeterministic real-world dynamic
communication environment. However, by a labeling function,
we know a link’s label value le for each potential link e ∈ E∗

a priori. That is, our formulation of (2), different from the
traditional CS formulation (1), is to infer Φ and the sparseness
pattern of the X , given a Y .

In our approach, a piggy-back path measurement yi of a
packet is encoded by each forwarder as the packet routed
through the network towards the sink. We employ modular
sum with mod m (SUMm) rather than arithmetic sum for
path measurement encoding, for the purpose of scalable WSN
communications and efficient in-network processing. If two
routes originating from the same node have the same encoded
path measurement value (i.e., a tie), these two routes are ba-
sically indistinguishable using the given measurement metric.
To reduce the probability of tie in path reconstruction at the
sink, exclusive or (i.e., XOR) can be additionally adopted as
the second encoding metric of path measurement.

C. Labeling Function

A good labeling function for communication links should
satisfy the following conditions: (1) reducing the probability
of path measurement ties, and (2) making it easy to generate
the link label by each link’s endpoint nodes. In this regard,
we devise a novel labeling function as given in Theorem 1. It
assigns a unique integer for any edge eu,v based on the unique
odd integer IDs of two endpoint nodes u and v. This way, any
node receiving a packet can easily compute the unique label
of the traversed link by this packet on-the-fly, without any
pre-stored link label table which can be very big.

Theorem 1. Assume each node i has a T -bit unique and
odd integer ID idi, for any directed edge eu,v , the edge label



lu,v = (idu× 2T ) XOR idv + (idv − idu) is a 2T -bit unique
and odd integer.

Proof. For any directed edge eu,v , both two node ID idu and
idv are T -bit integers, so (idu×2T ) XOR idv will be a 2T -bit
integer value as well as the edge label lu,v .

The two node ID idu and idv are also odd integers.
Therefore, (idu × 2T ) XOR idv is an odd integer while
(idv − idu) is an even integer, that is the sum of these two
integers lu,v is an odd integer value.

To prove the edge label lu,v is a unique value, assume there
is another edge eu′,v′ having the same value as lu,v . Since the
XOR operation in the edge label function has the same effect
as addition, we have
lu,v = (idu × 2T ) + idv + (idv − idu)
= (idu′ × 2T ) + idv′ + (idv′ − idu′),
which could be written as

(2T − 1)× (idu − idu′) = 2(idv′ − idv). (3)

If idu − idu′ 6= 0 and idv′ − idv 6= 0 in equation (3), the
right hand side is less than 2(2T − 1) but the left hand side is
no less than 2(2T − 1), which is impossible. Thus, it must be
idu = idu′ and idv′ = idv for equation (3) to hold. Since each
node ID is an unique integer, we show there does not exist
another edge eu′,v′ whose label equals to lu,v . Therefore, each
edge label is a 2T -bit unique and odd integer.

IV. ALGORITHMS

A. NS-RTR Algorithm

Considering that practically nodes in a WSN may not be
synchronized in their data sending, we develop our algorithms
to infer routing topology for general non-synchronized WSNs.
It can be seen that to solve an instance of the problem of (2)
is to solve M individual instances of the subset sum problem,
which is NP-hard. However, based on the sparsity of X , some
effective reconstruction algorithms are possible.

1) Assumptions: Assume that every sensor node in a WSN
sends (at least) a packet to the sink in a collection cycle.
First, we consider WSN routing topology inference for reliable
WSNs, i.e., no packet loss during a cycle of data collection.
From our WSN testbed observation, as well as the reported
result in [11] which showed 98% of packets had less than
two simultaneous shortcuts in a real-world large-scale outdoor
WSN deployment with high routing dynamics, we have the
following assumptions of sparseness with respect to A-Tree
routing model, to simplify the design of algorithms.
• Any packet originating from a source node will not

introduce more than one new shortcut link in its route
towards the sink;

• The total number of the shortcuts in the A-Tree is
bounded by a given constant K in any collection cycle,
i.e., |E+| < K, where K � n.

In addition, we assume that the ID of source sensor node, the
hop count of route and the parent node ID of source node are
available in each packet, such as in the popular CTP, without
adding any new overhead to a WSN packet. We note that

Notation
select(s): select the sparest solution(s) from the
set s, and return them in a set.
Function NS-RTR(Packets, root)
1: TPSet← {}; staticTree←{}; dependentMap
← {}; /*initializing variables*/

2: {staticTree, leftPackets, dependentMap} ←
buildStaticTree(Packets, root)

3: buildATrees(staticTree, leftPackets)
4: return select(TPSet)

Fig. 2. NS-RTR algorithm.

with the hop count, our devised algorithms can reconstruct
loopy routing paths, although loops are not included in A-Tree
model.

2) Design of Algorithm: In this section, we develop
our Non-Synchronized Routing Topology Recovery (NS-RTR)
algorithm for general non-synchronized multi-hop WSNs. Fig.
2 outlines the main NS-RTR algorithm. With the given parent
node ID in each packet, a static routing tree could be built by
the edges from each source node to its parent in a straight-
forward way. Then, for the packets which do not follow the
routing paths of their parent nodes, their introduced shortcuts
and thus their paths will be recovered in the process of building
A-Trees. Finally, the sparest possible path set(s) will be chosen
as the solution(s).

Some details of NS-RTR algorithm are described as follows.
Each packet from source node t is attached with a path
measurement yt = {y1t , y2t } encoded based on SUMm (with
mod m = 22T ) and XOR, respectively. For convenience, we
sometimes use ”recovering node i” to refer ”recovering the
path of a packet originating from node i”. These two terms
are exchangeable in this paper.

First, a static tree staticTree is built according to the
given packet set Packets received at the sink from the call
of function buildStaticTree(Packets, root). This static tree
staticTree is a spanning tree as the parent node ID is included
for each generated packet at a source node. The leftPackets
set contains the packets whose routing paths do not follow the
same routing paths of their parent nodes. The dependent map
dependentMap is used to record the relations between each
parent node and its dependent children nodes that are follow-
ing the same routing path as their parent node. Thus, if the path
of a parent node is recovered, we could easily recover the paths
for its dependent children nodes by checking the dependent
map. Next, function buildATrees(staticTree, leftPackets)
will recover the routing paths for the source nodes whose pack-
ets are in leftPackets, where shortcuts are hence introduced
in their paths. The buildATrees function may find more than
one possible path because of tie situations. All of the possible
paths will be put in set TPSet and the sparest one(s) will be
chosen as the solution(s).

Here are the details of function buildStaticTree (Packets).
For each packet, since parent node ID parent of node t
is given, a spinning tree staticTree could easily be built



Notation
findMatchedPaths(packet, tree): find the paths
matched the measurement in packet with at most
one newly introduced shortcut in the tree tree;
updateATree(tree, p): update A-Tree tree by
adding path p and its dependent children in
dependentMap if there is any;
group(s): group the same topologies in the set s.
Function buildATrees(tree, leftPackets)
1: if (leftPackets = {})
2: then TPSet ← group({tree} ∪ TPSet); return;
3: packets← leftPackets;
4: for (i← 1; i ≤ getSize(leftPackets); i + +)
5: paths← findMatchedPaths(leftPackets[i], tree)
6: if (paths 6= {})
7: then
8: for all p ∈ paths do
9: newTree← updateATree(tree, p);

10: newLeftPackets←
packets[i + 1, getSize(packets)];

11: buildATrees(newTree, newLeftPackets);
12: return;
13: end for;
14: else
15: packets← packets[i + 1,

getSize(packets)] ∪{packets[i]};
16: end for

Fig. 3. Function buildATrees in NS-RTR.

by adding edge et,parent. The path measurement of yt is
compared against the computing result based on the label of
the edge from node t to its parent node parent lt,parent, and
the measurement of its parent node yparent. If measurement
yt matches the computing result, it means the routing path
from source node t follows the routing path of its parent node
parent and edge et,parent will be added to the dependent map
dependentMap. Otherwise, it indicates there is a path change
so this packet needs to be added to set leftPackets and its
routing path will be recovered by function buildATrees later.

Function buildATrees(tree, leftPackets), as shown in Fig.
3, tries to recover the paths of packets left in leftPackets. All
the A-tree solutions will be put in the global variable TPSet
which is initially an empty set. If leftPackets is empty, it
means that all routing paths have been recovered and TPSet
could be updated by joining {{tree},TPSet}. Note, there may
be already a same topology tree in set TPSet so the group
function is used to remove the duplicates here. If leftPackets
is not empty, we check from the first packet in leftPackets.
If no matched path is found for this packet, move it to the
end of the packets set and check the next packet. If one
or more paths matched the measurement could be found by
function findMatchedPaths, update the current A-Tree with
each path to get new A-Tree(s). Each new A-tree newTree is
passed with the rest packets newLeftPackets to call function

Fig. 4. An example of NS-RTR.

buildATrees recursively.
Example 1: Fig. 4 illustrates how the devised NS-RTR

algorithm works with a network of 7 nodes. We use a
notation of {source, parent, hop count, {measurement
value1, value2}} to represent a packet. In this network,
the sink is node 0; packets received at the sink would be
Packets={{1, 0, 1, {1, 1}}, {2, 0, 1, {3, 3}}, {3, 0, 1, {11, 11}
}, {4, 3, 3, {21, 11}}, {5, 4, 4, {36, 4}}, {6, 4, 5, {45, 17}}}.
The order of the packets in the Packets does not matter.
Fig. 4(a) shows the static tree staticTree built from
function buildStaticTree. At this step, the corresponding set
leftPackets is {{4,3,3,{21,11},{6,4,5,{45,17}}}} and the
dependent map dependentMap is {0→{1,2,3},4→{5}}.
Node 5 is the dependent child node of node 4 which means
it follows the routing path of node 4. So the packet from
node 5 is not included in the set leftPackets. When the
routing path from node 4 is recovered, the path from node 5
could be easily found by checking the dependent map. Then
function buildATrees (staticTree, leftPackets) is used to
recover the paths of the packets in leftPackets. If packet
{6,4,5,{45,17}} is checked first, there will be no matched
path and this packet will be moved to the end of the Packet
If packet {4,3,3, {21,11}} is checked first, there will be two
matched paths found: {e4,3, e3,2, e2,0} and {e4,3, e3,1, e1,0}.
A tie situation occurs here. So the static tree could be
updated to a new A-tree shown in either Fig. 4(b.1) or Fig.
4(b.2). These two new A-trees are used to recover packet
{6,4,5,{45,17}} by calling function buildATrees again. The
routing path of the packet originated from node 6 {e6,4, e4,3,
e3,2, e2,1, e1,0} could only be recovered based on the A-tree
in Fig. 4(b.1). So the A-tree shown in Fig. 4(c) is the finally
reconstructed routing topology in the solution set of this
example.

Example 2: Fig. 5 further illustrates an NS-RTR example
for loopy path reconstruction in a network of 6 nodes. The



Fig. 5. An example of NS-RTR recovering loopy path.

packets received at the sink are Packets={{1, 0, 1, {1, 1}},
{2, 0, 1, {3, 3}}, {3, 1, 2, {8, 6}}, {4, 3, 4, {26, 10}}, {5, 3, 6,
{42, 0}}}. Fig. 5(a) shows the staticTree, along with which
the dependent map dependentMap is {0→{1,2},1→{3}}.
The corresponding set leftPackets at this moment is {{4,3,4,
{26,10}},{5,3,6,{42,0}}}. The function buildATrees will find
the matched path {e4,3, e3,1, e1,2,e2,0} for the first left packet
{4,3,4,{26,10}} and update staticTree to a new A-Tree
with the new shortcut e1,2 as shown in Fig. 5(b). Then the
path {e5,3, e3,1, e1,2, e2,3, e3,1, e1,0} will be found for the next
packet {5,3,6,{42,0}}. There is a loop {e3,1, e1,2, e2,3} in the
routing path for node 5. NR-RTR algorithm is able to recover
such loopy path cases with the help of the given hop count
information.

3) Fast NS-RTR (FNS-RTR) Algorithm: A solution set
obtained from NS-RTR algorithm could contain more than
one A-tree solutions due to potential tie situations. However,
a tie situation rarely occurs when both SUMm and XOR are
adopted for path measurement encoding. We hence devise a
fast version of NS-RTR algorithm, referred to as the FNS-RTR
algorithm, which attempts to give a unique true solution with
very high probability.

The FNS-RTR algorithm returns the first found solution
A-tree and then stops searching. The merit of FNS-RTR
algorithm is its speedup since FNS-RTR is likely to save
the effort of trying to find either non-existent or duplicated
solution(s). The main algorithm structure of FNS-RTR is very
similar to that of NS-RTR except that function buildATree is
used instead of function buildATrees. The main differences
between function buildATree and function buildATrees are
marked by underlines in Fig. 6. When a path is found by
function findMatchedPath, this path will be used to update the
current A-Tree for the left packets. So, there will be only one
A-tree reconstructed by function buildATree.

Example 3: Recover the routing topology in Example 1
using FNS-RTR. First, the static tree staticTree built from
function buildStaticTree is same as in Fig. 4(a). Also, the
corresponding set leftPackets is still {{4,3,3,{21,11},{6,4,5,
{45,17}}}} and the dependent map dependentMap is {0→
{1,2,3},4→{5}}. When function buildATree(staticTree,
leftPackets) is used to check packet {4,3,3,{21,11}}, one
matched path, either {e4,3, e3,2, e2,0} or {e4,3, e3,1, e1,0}, will
be found. If {e4,3, e3,2, e2,0} is obtained, the static tree could
be updated to the new A-tree shown in Fig. 4(b.1) and then

Notation
findMatchedPath(packet, tree): find the first path
matched the measurement in packet with at most
one newly introduced shortcut in the tree tree;
updateATree(tree, p): update A-Tree tree by
adding path p and its dependent children in
dependentMap if there is any.
Function buildATree(tree, leftPackets)

1: if (leftPackets = {})
2: then TPSet← {tree}; return;
3: packets← leftPackets;
4: for (i← 1; i ≤ getSize(leftPackets); i + +)
5: path← findMatchedPath(leftPackets[i], tree);
6: if (path 6= null)
7: then
8: newTree← updateATree(tree, p);
9: newLeftPackets←

packets[i + 1, getSize(packets)];
10: buildATree(newTree, newLeftPackets);
11: else
12: packets← packets[i + 1,

getSize(packets)] ∪{packets[i]};
13: end for

Fig. 6. Function buildATree in FNS-RTR.

the path of packet {6,4,5,{45,17}} will be recovered later as
shown in Fig. 4(c). FNS-RTR will return the solution A-tree in
Fig. 4(c). If {e4,3, e3,1, e1,0} is found, the new A-tree will be
as shown in Fig. 4(b.2) and the routing path originated from
node 6 cannot be recovered. Then the FNS-RTR algorithm will
not find any solution A-tree and return null. Note, while it is
possible for the FNS-RTR algorithm to not find any solution
A-tree, the possibility of such situation is very low from
our observation, when the effective labeling function given
in Section III.C is employed.

4) Complexity Analysis: We examine the complexity of
the FNS-RTR algorithm, while the complexity analysis of
NS-RTR algorithm is omitted due to the page limit. As
shown in subsection IV.A.3, the complexity of the FNS-RTR
algorithm is the complexity of function buildStaticTree plus
the complexity of function buildATree. With the given parent
node information in each packet, the complexity of function
buildStaticTree is pretty straightforward. For a WSN of size
n, the complexity of function buildStaticTree is O(n).

To analyze the complexity of function buildATree, we first
check the complexity of its core function findMatchedPath
(line 5 of Fig. 6). We give the following Theorem 2.

Theorem 2. Given an A-Tree with at most r = |E+| < K
shortcuts, the maximum number of all possible routing paths
for any node without loop in this A-Tree is O(1).

Proof. Let PN denote the number of all possible paths
towards the sink for a node in a given A-Tree. The best case
is no shortcut along the path for the node, PN = 1. The worst



case is all shortcuts are along the path: PN =
∏h

i=1(1 + ki)
where ki is the number of shortcuts for each node i along the
path and h is the hop number of the path. It will not affect
the value of PN if we remove or add a factor (1 + ki) when
ki = 0. So if h > r, we can remove (h−r) factors of (1+ki)
with ki = 0; if h < r, we can add (r− h) such factors. Then
we can get PN =

∏r
i=1(1 +ki) and

∑r
i=1 ki ≤ r since there

are at most r shortcuts in the A-Tree.
Also since ki should be non-negative integer number,

based on AM-GM inequality (inequality of arithmetic and

geometric means),
∏r

i=1(1 + ki) ≤ (

∑r

i=1
(1+ki)

r )r =

(

∑r

i=1
1+
∑r

i=1
ki

r )r ≤ ( r+r
r )r = 2r. Therefore, PN ≤ 2r =

O(1) since r is a given constant integer.

Since, according to Theorem 2, the total number of routing
path candidates is bounded by a constant for each shortcut
candidate to be checked, the complexity of function find-
MatchedPath depends on the number of shortcut candidates
to check. A possible start node of a shortcut for a given left
packet could be any node along a possible routing path from
the source node’s parent node except the sink. As the hop
count of any path is bounded by the size of WSN n (without
loops), the number of possible start nodes of a shortcut is then
O(n). Similarly, a possible end node for a shortcut could be
any node in the network, which means the number of possible
end nodes of a shortcut is also O(n). Thus, the complexity
of the function findMatchedPath, the total number of shortcut
candidates to check, is O(n2).

The complexity of function buildATree depends on how
many times the function findMatchedPath will be called.
The best case is the shortcuts introduced by individual left
packets are independent, in which function findMatchedPath
only needs to be called once for each left packet. Since
there are j < n packets left initially in any collection cycle,
the complexity of function buildATree in the best case is
O(j) = O(n). On the other hand, the routing path of one
packet may include the shortcut introduced by another packet.
Thus, the worst case is that in every round of the for loop at
line 4 in Fig. 6, all left packets have to be checked before a
routing path of the last packet checked is found. So function
findMatchedPath will be called

∑j
i=1 i times in such case,

which is O(j2) = O(n2). In conclusion, the complexity of
function buildATree is O(n4), and therefore the complexity
of the FNS-RTR algorithm is also O(n4).

B. INS-RTR Algorithm

Our presented NS-RTR algorithms above are for reliable
WSNs. However, packets can be lost in real-world WSNs.
A source sensor node is called a missing node if its packet
did not arrive at the sink in that collection cycle. We further
develop a new NS-RTR algorithm for lossy WSNs, referred to
as the INS-RTR algorithm, to recover the routing paths with
incomplete packet set received. The challenge of the INS-RTR
algorithm is to recover any path from a source node that may
traverse one or more missing nodes.

Notation
getMissingNodes(AllNodes, Packets): get the
nodes from the set AllNodes that do not have
a packet received in Packets.
addVirtualLinks(virtualTP, n): add virtual links
for missing node n to the topology virtualTP ,
and return new topology with the new virtual
links.
removeVirtualLinks(virtualTP ): remove virtual
links from the topology virtualTP , and return
topology with only recovered wireless links.
Function INS-RTR(Packets)

1: MissingNodes ←
getMissingNodes(AllNodes, Packets)

2: TPSet ← {}; staticTree← {};
dependentMap ← {}; /*initializing variables*/

3: {staticTree, leftPackets, dependentMap} ←
buildStaticTree(Packets, root)

4: virtualTP ← staticTree
5: for all n ∈MissingNodes do
6: virtualTP ← addVirtualLinks(virtualTP, n);
7: end for
8: buildATree(virtualTP, leftPackets)
9: TP ← removeVirtualLinks(virtualTP )

10: return TP

Fig. 7. INS-RTR algorithm.

1) Assumptions: First, to deal with any lossy WSN, all node
IDs of the WSN are known in advance to identify any missing
nodes in any collection cycle. Here we assume that the total
number of missing nodes is bounded by a given constant in
any data collection cycle. Second, while we still assume that
each node will not introduce more than one new shortcut link
in its route towards the sink, the total number of the shortcuts
in an A-Tree now does not need to be bounded by a constant
in any collection cycle. Finally, it is assumed that any missing
node will only introduce one link, as we attempt to obtain the
sparsest solutions by our INS-RTR algorithm for lossy WSNs.

2) Algorithm description: The main challenge is how to
infer the routing path of a received packet that has been
forwarded by some missing node(s). To address this problem,
the basic idea of INS-RTR is to tentatively add virtual links
attached to each missing node, with which we are able to
apply the similar method as used in NS-RTR algorithms to
recover the routing paths of received packets. The devised
INS-RTR algorithm is shown in Fig. 7. If there are any
intermediate nodes missing when a static tree staticTree is
built based on the received packets, the built ’static tree’ will
not be a connected spanning tree but rather a forest. Some
edges are missing due to these missing intermediate nodes.
The received packets originating from their children nodes
will be put in the set leftPackets. Then virtual links are
added for each missing node in MissingNodes, so that each
missing node will connect to every other node in a ’virtual
static tree’. Finally, according to the actual links found in



Fig. 8. An example of INS-RTR.

function buildStaticTree and the virtual links added for the
missing nodes, function buildATree will be used to recover
the packets in leftPackets. We could use either function
buildATrees in the NS-RTR algorithm to get a set of solutions
or function buildATree to get only one solution. The INS-RTR
algorithm given in Fig. 7 uses function buildATree described
in Fig. 6. The unused virtual links need to be removed if they
are not being recovered as actual links/shortcuts in function
buildATree. The solution of routing topology will only contain
the wireless links along the recovered routing paths for the
received packets.

Example 4: To illustrate, the same WSN of Example 1 is re-
examined where the packet from node 3 is lost in the given col-
lection cycle this time, resulting in the incomplete packet set
Packets = {{1, 0, 1, {1, 1}}, {2, 0, 1, {3, 3}}, {4, 3, 3, {21, 11
}}, {5, 4, 4, {36, 4}}, {6, 4, 5, {45, 17}}}. The static tree
staticTree built by function buildStaticTree based on the
received packets is shown in Fig. 8(a). The edge started
from node 3 is missing in staticTree since the packet for
node 3 is missing. Set leftPackets and dependent map
dependentMap are {{4,3,3,{21,11},{6,4,5,{45,17}}}} and
{0→{1,2},4→{5}} respectively. Static tree staticTree is ini-
tially expanded to virtualTP , in which all the potential virtual
links for the missing node 3 are added as shown in Fig. 8(b).
Then function buildATree(virtualTP, leftPackets) is used
to check the packets in leftPackets. If path {e4,3, e3,2, e2,0}
is found as the matched path for packet {4,3,3,{21,11}}, the
topology will be updated as in Fig. 8(c). Fig. 8(d) shows the
topology after recovering routing path {e6,4, e4,3, e3,2, e2,1,
e1,0} for packet {6,4,5,{45,17}}. Any unused virtual links are
then removed and the solution topology is given in Fig. 8(e).

V. PERFORMANCE EVALUATION

We conducted thorough simulations of lossy WSNs in
TOSSIM [19], the standard network simulator in TinyOS [17],

TABLE I
SIMULATION STATISTICS

WSN Size 200 500
Total packets 19424 42641
Packet delivery ratio 97.12% 85.28%
Total cycles 100 100
Total different path groups 8520 35771
Longest path (hops) 16 25
Avg. shortcuts per cycle 19.24 189.40
Stdev. of shortcuts per cycle 12.12 65.04
No. of path group ties 12 24

to evaluate our approach versus other state-of-the-art methods
MNT, Pathfinder, and CSPR. TOSSIM utilizes the popular
Meyer Heavy noise trace to provide realistic noise model
during the simulation [20]. Two network sizes of 200 and
500 uniformly distributed nodes were both simulated for 100
data collection cycles. We keep the density of the sensor nodes
unchanged when the network size increases.

Table I illustrates the statistics of the simulations for two
network sizes, with the packet delivery ratio being 97.12% and
85.28%, respectively. A pathgroup is a set of packets which
are transmitted following the same path [18]. The number of
different path groups indicates the number of different routing
paths and hence reflects the routing dynamics in the network.
For 200-node WSN simulation, there are totally 8520 path
groups; for 500-node WSN simulation, the number of path
groups has been increased to 35771. According to the last
row of Table I, the probability of path group tie is very
small, 12/8250 (0.145%) and 24/35771 (0.067%) for 200-node
network and 500-node network, respectively, indicating that
modular sum and XOR are effective path encoding metrics.

We compare our INS-RTR algorithm with MNT [2],
PathFinder [11], and CSPR [18], the three most related works
of WSN path inference. We focus not only on per-packet
path reconstruction but also on path group reconstruction. For
CSPR, a path group, and hence all the packets in the path
group, cannot be recovered if it contains insufficient number of
packets even after data collections for many cycles. In fact, due
to the dynamic nature of the simulated WSNs, it is observed
that 92.11% of the path groups in 200-node simulation and
98.95% of the path groups in 500-node simulation contain
less than 5 packets.

Fig. 9 shows the successful ratios of the per-packet path
recovery and the path group recovery separately. Regarding
per-packet path recovery, for 200-node simulation study, INS-
RTR has successfully recovered the paths of 91.23% packets,
whereas MNT has recovered 46.50%, Pathfinder has recovered
58.32%, and CSPR has recovered 26.98%. Increasing the
network size has degraded the performance of all the algo-
rithms. For 500-node simulation study, CSPR has recovered
the paths of only 6.90% packets, whereas MNT has recovered
11.37%, and Pathfinder recovered 16.28%. In contrast, INS-
RTR has achieved the path reconstruction ratio of 50.65%, still
performing much better than the other approaches/algorithms.

The recovery of path groups can provide us with more
insights into the different approaches. The number of path



Fig. 9. Comparison among INS-RTR, MNT, Pathfinder, and CSPR.

TABLE II
COMPARISON BETWEEN CSPR AND OUR APPROACH.

Our Approach CSPR
Path representation Link vector Node vector
Path measurement Modular SUM&XOR Modular SUM
Packet overhead 4 or 8 bytes ≥ 8 bytes
reconstruction Based on the packets Based on the packets

in a collection cycle in a path group
Major constraints – Many path groups can

not collect enough packets

groups indicates the degree of routing dynamics in a given
WSN. Thus, it can be used as an important metric to demon-
strate the ability of each approach to really catch routing
dynamics. As shown in Fig. 9, INS-RTR significantly out-
performs all the other algorithms. It has successfully recov-
ered 80.37% of the path groups in the 200-node simulation
and 41.30% path groups in the 500-node simulation. CSPR
performs the worst due to insufficient packets in most of the
path groups. For 200-node simulation, CSPR only recovered
2.09% of the path groups, whereas for 500-node simulation,
it only recovered 0.30% path groups. MNT and Pathfinder
have recovered 20.32% and 32.67% of the path groups in the
200-node simulation, respectively. For 500-node simulation,
MNT recovered 3.00% of the path groups, whereas Pathfinder
recovered 6.45%.

In summary, INS-RTR has significantly outperformed the
MNT, Pathfinder, and CSPR on both per-packet path recon-
struction and path group recovery. In particular, the evaluation
results profoundly reveal that due to their different problem
formulations, our approach and CSPR exhibit drastic differ-
ence in their respective performances although both are CS-
inspired approaches. Table II further summarizes the major
differences between CSPR and our approach. The undesirable
reconstruction performances of CSPR are mainly caused by its
drawback of unable to collect a sufficient number of packets
for many highly dynamic paths that do not occur frequently.
Thus, CSPR fails to recover those paths even after hundreds
of data collection cycles.

Fig. 10. An illustration of the WSN testbed deployed in a forested nature
reserve at ASWP.

VI. REAL-WORLD WSN VALIDATION

A. WSN testbed

A real-world outdoor multi-hop WSN testbed is used to
further validate and evaluate our approach. This WSN testbed
used in our experiments has been deployed in a forested
nature reserve at the Audubon Society of Western Pennsyl-
vania (ASWP), Pennsylvania, collecting ground-based data
for calibrating and validating scientific models in hydrology
research [15, 16]. Two types of nodes, MICAz and IRIS, are
deployed running a data collection application developed using
CTP in TinyOS 2.1.2. Over 50 sensor nodes are deployed in
the monitoring area, As shown in Fig. 10.

B. In-network processing

We developed a lightweight in-network processing layer
in node’s network stack to encode the piggy-back path in-
formation of each packet along the path towards the sink.
The in-network processing layer is implemented in TinyOS
2.1.2, between the network layer and the link layer, providing
transparent in-network processing service to all upper layers.

A few bytes are added into each packet to carry the
compressed measurement of the packet path up to the current
receiving node, using either SUMm alone or SUMm and
XOR of the labels of the traversed links. The use of SUMm

alone is for smaller WSNs to further reduce the packet
overhead, whereas the use of both SUMm and XOR is for
large-scale WSNs where path measurement ties may occur. In
TinyOS, a node ID is an unsigned 16-bit integer, and hence a
link label is 32 bits. Thus the compressed path measurement
adds totally four bytes (SUMm alone) or eight bytes (SUMm

and XOR) overhead to a packet. This overhead is similar to
other approaches: eight bytes in CSPR and PathZip, four bytes
in MNT, and maximum seven bytes in Pathfinder. The hop
counter in CTP is adopted. A source node initially reserves
the space of the needed fixed-size measurement overhead
to a packet, whereas the path encoding (i.e., SUMm and
XOR) is implemented at each receiver of the packet, as the
packet has completed its link communication on this hop
once successfully received by a receiver. We note that our



approach needs little node resource beyond the four or eight
bytes of packet overhead, because the path encoding of a
packet can be very easily performed by each forwarder. In
contrast, other approaches (e.g., CSPR and PathZip) require a
lot node resources in addition to their packet overheads. For
example, CSPR requires 200 bytes in each node for storing its
dictionary. For the purpose of validation, each packet’s actual
path is recorded hop by hop in each packet up to the maximum
10 hops for our WSN testbed, which is used as the ground
truth. We note that the 20 bytes of path recoding will not be
necessary in regular WSN deployments.

C. Testbed Results And Analyses

Each packet received at the WSN sink includes source
node ID, parent node ID, the hop count of path, and path
measurements. Such information will be used to recover the
routing path for each received packet. Every packet also
records its full path to validate the recovered path and thus to
verify the correctness of our algorithm. A timestamp is added
for each packet at the sink to record its arrival time.

We first conducted some preprocessing of received packets
at the sink. According to their time stamps, packets are parti-
tioned into different collection cycles. Our INS-RTR algorithm
for lossy WSN was applied for path reconstruction due to
packet drops in the testbed data collection.

Two tests during two periods of [2013-11-19, 2013-12-04]
and [2014-02-21, 2014-03-19] under different WSN dynamics,
with totally more than 200 thousands of packets received,
are examined in our evaluation. The total number of packets
generated in the testbed during a test period can be computed
based on packet sequence number assigned at each source
node. Detailed information of the two tests and their path
reconstruction results are given in Table III. Packet delivery
ratios were 90.52% and 87.84% for test 1 and test 2, respec-
tively. Using both SUMm and XOR in path encoding, path
recovery ratios were 99.98% and 99.99% for test 1 and test 2,
respectively, whereas path group recovery ratios were 98.78%
and 99.26% for test 1 and test 2, respectively. In particular,
we observed that even using SUMm measurement alone INS-
RTR algorithm had the same or slightly lower path recovery
and path group recovery ratios as those using both SUMm and
XOR, as shown in the last two rows of Table III, indicating
that the use of SUMm measurement alone in our approach
could be sufficient for successful routing topology monitoring
in WSNs of small and moderate sizes.

VII. CONCLUSIONS

We present a novel approach to WSN tomography for
dynamic routing topology from piggy-back measurements.
Formulated as a novel and interesting optimization problem,
our approach is general and systematic, particularly suited for
WSN deployments at harsh environments with severe resource
constraints at sensor nodes. To the best of the authors knowl-
edge, our work, originally presented in [21] and substantially
extended in this paper, provides the first CS-inspired approach
to address dynamic WSN path reconstruction. We devise a

TABLE III
TESTBED PACKETS AND PATH RECONSTRUCTION RESULTS

Test 1 Test 2
Collection Time 2013-11-19 00:00 2014-02-21 00:00

2013-12-04 24:00 2014-03-19 24:00
Total packets received 71536 135458
Packet delivery ratio 90.52% 87.84%

Total cycles 1536 2588
Total path groups 1069 1494

Path recovery ratio 71520/71536 135411/135458
using SUMm and XOR (99.98%) (99.97%)
Path group recovery ratio 1053/1069 1473/1494
using SUMm and XOR (98.50%) (98.59%)

Path recovery ratio 71520/71536 135407/135458
using SUMm alone (99.98%) (99.96%)

Path group recovery ratio 1053/1069 1469/1494
using SUMm alone (98.50%) (98.33%)

suite of algorithms to reconstruct per-packet routing path at
the sink for both reliable and lossy non-synchronized WSNs.
One unique strength of our algorithms is their capability
to reconstruct loops in per-packet paths, which would be
very helpful for WSN diagnosis and performance analysis of
routing protocols. Extensive simulations of lossy WSNs with
drastic routing dynamics are conducted in comparison with the
recent methods MNT, PathFinder, and CSPR. The results re-
veal that our INS-RTR algorithm significantly outperforms all
the three state-of-the-art methods. Furthermore, our approach
and INS-RTR algorithm are thoroughly validated in a real-
world outdoor WSN testbed for months with more than 200
thousand received packets, achieving successful path (group)
reconstruction ratios of higher than 98%. In our future work,
we plan to further extend our algorithms to deal with more
complex routing dynamic where multiple new shortcuts are
introduced in an individual packet routing path.
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